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LOWER AND UPPER ESTIMATES OF THE RUPTURE TIME

FOR STRUCTURAL ELEMENTS

UDC 539.4A. F. Nikitenko

A method of obtaining the lower and upper estimates of the rupture time for structural elements
is proposed. As an example, the rupture time for a rotating, nonuniformly heated disk with a
hyperbolic profile is estimated.

In designing the structural elements that indented for work under creep conditions, it is necessary that
the elements satisfy both the strength and rigidity criteria during the period of their use. To ensure these
criteria, the rupture and service times, respectively, should be calculated [1–4].

Using Rabotnov’s kinetic theory of creep, one can calculate the lower and upper estimates for the
rupture time of structures. Below, we obtain these estimates for an arbitrary nonuniformly heated body
(structural element) subjected to constant-in-time surface loads. The temperature field is assumed to be
stationary. The estimates obtained are compared with those currently used in designing the structures [2, 5].

1. Relations of Rabotnov’s kinetic theory of creep [1, 2, 6]

ηij =
W

σeff

∂σeff

∂σij
, W =

Bσn+1
eff

ϕ(ω)
, i, j = 1, 2, 3; (1.1)

ω̇ = B1σ
g+1
∗ /ϕ(ω), ω(xk, 0) = 0, ω(x∗k, t∗) = 1 (1.2)

and the equations of equilibrium, the Cauchy relations, the strain-rate compatibility equations, and the
corresponding boundary conditions make it possible to combine two independent problems: the problem of
determining the stress–strain state of an arbitrary body and the problem of calculating the rupture time of
this body [1]. Obviously, its solution involves certain mathematical difficulties even in the case of the simplest
structural elements [1]. Nikitenko and Zaev [7, 8] developed an approximate method of solving this problem,
according to which the stress–strain state of an arbitrary, nonuniformly heated body under constant surface
loads is represented in the form (the temperature field is assumed to be constant)

σij(xk, t) = σ0
ijf(xk, t) + C1(xk, t)δij , f = [ϕ(ω)]1/n/X(t); (1.3)

ε̇ij(xk, t) = η0
ijF (t). (1.4)

In (1.1)–(1.4), σeff and σ∗ are first-degree homogeneous functions of stresses, W = σijηij , σij and ηij are the
components of the creep-stress and strain-rate tensors, B, n, B1, and g are the creep and long-term strength
characteristics of the material (n and g are assumed to be constant in the temperature range considered and
B and B1 are assumed to be temperature functions [9]), and ω is the parameter governing the accumulation
of defects in the material. For the initial material, the damage parameter is equal to zero at each point
of the body with the coordinates xk (k = 1, 2, 3); if ω(x∗k, t∗) = 1 at a certain point with the coordinates

Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 42, No. 1, pp. 164–169,
January–February, 2001. Original article submitted April 13, 1999; revision submitted October 14, 1999.

146 0021-8944/01/4201-0146 $25.00 c© 2001 Plenum Publishing Corporation



x∗k at the moment t = t∗, it is assumed that the rupture begins at this point and the time t∗ is called the
rupture time. The function ϕ(ω) in relations (1.1) and (1.2) is taken in the form ϕ = ωα(1 − ωα+1)m [6];
the case m = 0, α 6= 0 refers to the material that hardens in creep, the case m 6= 0m α = 0 refers to the
material that unhardens in creep, and the case α = m = 0 refers to the material that obeys the law of steady
creep; εij = εij + pij + εδij are the strain-tensor components, εij are the components of the elastic-strain
tensor, εδij is the temperature strain, and pij are the creep strains. The superscript 0 shows that the function
depends only on the coordinates xk and the dot denotes differentiation with respect to time.

Generally, σ0
ij and η0

ij in (1.3) and (1.4) are the statically admissible and kinematically possible fields.
In this case, this is the solution of the above-formulated problem under the assumption of steady creep of the
material

η0
ij =

W 0

σ0
eff

∂σ0
eff

∂σ0
ij

, W 0 = B0(σ0
eff)n+1. (1.5)

The hydrostatic component C1 satisfies the system

∂C1

∂xj
δij = −σ0

ij

∂f

∂xj

at each point of the body and the condition C1 = (1− f)T at the body surface ST , where T is the modulus
of surface-load vector.

The functions F (t), X(t), and ω(xk, t) are determined from a system which has the following form for
the material unhardening in creep (α = 0 and m 6= 0) [7, 8]:

F (t) =
∫
V

f(xk, t)σ0
ij ε̇ij dV

/∫
V

W 0 dV + [X(t)]−n;

µ∫
1

Zm(n−g−1)/n dZ = −[(m+ 1)t0]−1

t∫
0

[X(τ)]−(g+1) dτ ; (1.6)

∫
V

W 0[µ(xk, t)]m/n dV = X(t)
∫
V

W 0 dV. (1.7)

Here µ(xk, t) = 1− ω(xk, t), µ(xk, 0) = 1, µ(x∗k, t∗) = 0, and

t0(xk) = [CB0
1(σ0
∗)
g+1]−1, C−1 =

1∫
0

ϕ(ω) dω. (1.8)

We note that (1.8) follows from (1.2) under the assumption of steady creep of the material. From (1.8), the
rupture time t0(x∗k) at the point with the coordinates x∗k is calculated. Hereafter, we denote it by t0∗. Thus, t0∗
is the moment at which the body begins to fail at the point with the coordinates x∗k in solving a corresponding
problem under the assumption that the material obeys the law of steady creep (1.5).

The requirement for the convergence of the integral on the left side of Eq. (1.6) imposes certain
restrictions on the creep and long-term strength characteristics of the material. These restrictions do not
contradict experimental results. In particular, β = m/[n + m(n − g − 1)] > 0. One can verify that system
(1.6), (1.7) admits an analytical solution only for β = 1; in other cases, one can obtain the lower and upper
estimates for this solution. For example, for β > 1, we have(

1− t

t̄ 0

)βv
6 X(t) 6

(
1− v(g + 2)t

t̄ 0

)1/(g+2)
,

µm/n >

{
1− t̄ 0

t0∗

[
1−

(
1− t

t̄ 0

)v ]}β
, (1.9)
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µm/n 6

{
1− t̄ 0

t0∗

[
1−

(
1− v(g + 2)t

t̄ 0

)1/(g+2) ]}β
. (1.10)

Here

v =
n+m(n− g − 1)

n(m+ 1)
, t̄ 0 =

∫
V

W 0 dV

/∫
V

(W 0/t0) dV. (1.11)

With allowance for 0 < µ(xk, t) < 1 and µ(x∗k, t∗) = 0, from (1.9) and (1.10) we obtain the desired estimates
of the rupture time

1− (1− λ)1/v

λ
6
t∗
t0∗
6

1− (1− λ)g+2

λ

1
v(g + 2)

, λ =
t0∗
t̄ 0
. (1.12)

2. In calculating the structures, one is recommended to calculate the lower estimate for the rupture
time under the assumption of steady creep of the material [1, 2, 5, 10]. It is impossible to show that such a
calculation gives the lower estimate [10]. Similarly, without substantiation, one is recommended to calculate
the upper estimate by analyzing the limit state of the body [2]. Thus, these estimates can be written in the
form

t0∗ 6 t∗ 6 t∗∗. (2.1)

Here t∗∗ is the moment the failure occurs at each point of the body.
We now compare the estimates (1.12) and (2.1). We first perform a limit-state calculation. We require

that the stresses satisfy the limit-state condition [11]. This condition follows from (1.2) and, for the stationary
thermal–force action, it has the form [11]

B0
1(σ0
∗)
g+1 = (Ct∗∗)−1, C−1 =

1∫
0

ϕ(ω) dω. (2.2)

Relation (2.2) can be written in the form

Uσ0
∗ = σl.s., U = [B0

1(θ)/B0
1(θ0)]1/(g+1), σl.s. = [CB0

1(θ0)t∗∗]−1/(g+1),

where σl.s. is the ultimate long-term tensile strength of the material determined for t∗∗ at a fixed temperature
θ0. The limit-state condition can be written as follows: σ0

∗ = σl.s., where σl.s. = [CB0
1(θ)t∗∗]−1/(g+1). This

condition is an analog of the yield condition for the material. In this case, the ultimate long-term strength
of the material determined for t∗∗ is a known temperature function.

Using condition (2.2), from (1.8) and (1.11) we obtain t0∗ = t∗∗ and t̄ 0 = t∗∗. Taking into account that
λ = t0∗/t̄

0 = 1, from (1.12) we finally obtain

t∗∗ 6 t∗ 6 t∗∗/[v(g + 2)]. (2.3)

Comparing (2.1) and (2.3) with allowance for t0∗ = t∗∗, we infer that the upper estimate (2.1) does not
agree with (2.3).

In most practical cases, the limit-state condition (2.2) cannot be satisfied. Therefore, as a rule,

B0
1(σ0
∗)
g+1 6 (Ct∗∗)−1. (2.4)

With allowance for (2.4), (1.8) implies that t0∗ > t∗∗. One can verify that the fraction in (1.12) is no less than
unity: (1 − (1 − λ)1/v)/λ > 1, (1 − (1 − λ)g+2)/λ > 1, and 0 < λ 6 1. By virtue of these inequalities and
(1.12), we obtain

t∗ 6
1− (1− λ)g+2

λ

t0∗
v(g + 2)

;

1− (1− λ)g+2

λ

t0∗
v(g + 2)

>
t0∗

v(g + 2)
>

t∗∗
v(g + 2)

; (2.5)
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t∗ >
1− (1− λ)1/v

λ
t0∗ > t

0
∗ > t∗∗. (2.6)

System (2.6) shows the consistency of the lower estimate of the rupture time (2.1) used in calculational
practice. The rupture time calculated on the basis of the estimate (1.12) is closer to the true value than that
calculated with the use of the estimate (2.1).

3. Let us estimate the time the rupture begins in a rotating, nonuniformly heated disk with a hyperbolic
profile. In this case, the plane stress state occurs. We assume that σϕ > σr > σz = 0.

As an equivalent stress σ0
eff in (1.5), we use the maximum shear-stress criterion σ0

eff = σ0
ϕ/2. We assume

that the creep coefficient is a power function of temperature: B0 = B0θ
ν1 . The law of temperature variation

on the disk radius is taken in the form

θ = θ0(r/a)ν2 (ν2 > 0),

where a is the inner radius of the disk. Let % = b/a, where b is the outer radius of the disk. The disk thickness
is given by h = h0r

−k, where k > 0. The problem of determining the stress–strain state of a nonuniformly
heated disk with a hyperbolic profile was solved in [9, 11] under the assumption of steady creep of the material
for the power law (1.5).

The stresses are given by

σ0
r = C1

(r
a

)k−1
− C2

(a
r

)(1+ν)/k
− ρΩ2

3− k
r2, σ0

ϕ = δC2

(a
r

)(1+ν)/n
,

C1 =
p1 + p2%

1+δ−k

%δ − 1
+
%3+δ−k − 1
%δ − 1

ρa2Ω2

3− k
, δ = k − 1 +

1 + ν

n
, (3.1)

C2 =
(p1 + p2%

1−k
)
%δ

%δ − 1
+

(%3−k − 1)%δ

%δ − 1
ρa2Ω2

3− k
,

where Ω is the angular velocity, ρ is the density of the disk material, p1 = −σr(a), p2 = σr(b), and ν = ν1ν2.
As an equivalent stress σ∗ in (2.2), we use the Johnson criterion σ∗ = σ0

ϕ. The coefficient B0
1 is assumed

to be a power temperature function: B0
1 = B01θ

ν1 . The limit-state condition (2.2) takes the form

(r/a)ν/(g+1)σ0
ϕ = σl.s., σl.s. = (CB01θ

ν1
0 t∗∗)

−1/(g+1). (3.2)

In the case of the limit state of the disk material, the stress field (3.1) must satisfy condition (3.2),
which implies that the limit state of the disk occurs provided [11]

ν =
g + 1

n− g − 1
,

ρa2Ω2
∗

3− k
=

%δ − 1
δ%δ(%3−k − 1)

σl.s. −
p1 + p2%

1−k

δ(%3−k − 1)
. (3.3)

We set ν = µ(g+ 1)/(n− g− 1) and 0 6 µ 6 1. The value of µ = 0 corresponds to a uniformly heated
disk, and µ = 1 to a nonuniformly heated disk in the limit state.

The disk begins to fail at the inner surface: r∗ = a. Using (3.1), we calculate t0∗ and t̄0 from formulas
(1.8) and (1.11) and their ratio λ = t0∗/t̄

0. We obtain

λ =
ξ2

ξ1

%ξ2 − 1
%ξ1 − 1

, λ = λ(µ),

(3.4)

ξ1 = −k +
n− g − 2

n

n− (1− µ)(g + 1)
n− g − 1

, ξ2 = −k + 1− n− (1− µ)(g + 1)
n(n− g − 1)

.

Figure 1 shows curves which refer to the lower and upper bounds for the rupture time of the disk at
various values of k (k = 0, 1, and 2) and % = 4. The calculation was performed by formulas (1.12) and
(3.4). The following characteristics of the creep and long-term strength of the material were used: n = 6,
g = 4.75, and m = 10. The dashed curve refers to the upper bound, the solid curve to the lower bound,
the dot-and-dashed curve to the lower bound calculated by (2.1), and the dotted curve to the upper bound

149



Fig. 1

calculated by (2.3). Obviously, the estimate calculated from (2.1) is close to (1.12) in the “neighborhood”
of the value of µ corresponding to the limit state of the body. A state close to the limit state can occur
in a body with a given geometry under external temperature-force actions and in a body with the optimal
geometry under specified external actions. Indeed, the dependences shown in Fig. 1 imply that:

1) For a nonuniformly heated disk of constant thickness (k = 0), the dot-and-dashed curve deviates
from the solid curve by 7, 19, and 63% for µ = 0.8, 0.60, and 0.2, respectively;

2) For a nonuniformly heated disk with a hyperbolic profile (k > 0), these deviations are 5.5 (k = 1)
and 4.5% (k = 2) for µ = 0.8, 14 (k = 1) and 11% (k = 2) for µ = 0.6, and 46 (k = 1) and 33% (k = 2), for
µ = 0.2;

3) For a uniformly heated disk (µ = 0), these deviations are 104, 76, and 54% for k = 0, 1, and 2,
respectively.

Thus, in all the cases, the lower estimate t∗ > t0∗ becomes rough for states different from the limit
state.

In summary, we note that the corresponding estimates of the rupture time given by inequalities (1.12)
are valid if β = m/[n+m(n−g−1)] > 1. If β = 1, the lower and upper estimates coincide, and the expression
for calculating the rupture time becomes

t∗
t0∗

=
1− (1− λ)1/γ

λ
, γ =

m

n(m+ 1)
(if β = 1, then v = γ and v(g + 2) = 1 [7, 8]). The case 0 < β < 1 is analyzed in a similar manner.

The above-considered method of calculating the lower and upper estimates for the rupture time of
structural elements can be used for calculating the structures. In accordance with this method, one should
determine the stresses in the body under the assumption that the creep is steady for the power law (1.5) and
calculate the estimates by means of the system of inequalities (1.12) and relations (1.8) and (1.11).
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